
 - 1 -

Adam

Talbot

0707754

Assignment 1

Software Design for Ricochet

(CP2119) GAMES DEVELOPMENT 1

P a g e | 2

Contents

Introduction... 3

Analysis ... 4

Aims .. 4

Assumptions .. 4

Initial Design ... 5

Player ... 5

NPC .. 6

Object .. 7

Menu ... 7

Level .. 8

Main... 8

Implementation tools ... 8

Class Diagram ... 9

Final Design ... 10

Menu ... 10

Screen Designs... 10

Player ... 12

Shield Physics .. 14

Camera .. 15

NPC ... 16

SFX ... 17

HCI Considerations ... 18

Testing Strategy ... 19

Time plan ... 23

P a g e | 3

Introduction

The aim of this report will be to produce a detailed document planning and designing the

creation of a 3D third person shooter style game.

The plan for my program is to load a bug-free game whereby the user takes control of a

player character and can interact with it in various ways. The setting of the game will be in a

long corridor shaped environment with the player standing at one end and waves of enemies

incoming from the other end. The style of the game might be compared to that of a space

invaders type game but with major alterations visually and in game play.

The player will have the ability to shoot at the enemies with an unlimited supply of basic

ammo, dealing damage to the enemy units until their HP drops to 0, and in turn must avoid

incoming fire from enemy units and keep their own HP above 0 or its game over. As well as

this the player will be able to pick up items off the floor, such as special ammo which has a

limited supply but deals increased damage to enemies, health packs which will restore a

percentage of the players total HP, and thirdly I plan to have a special shield type item. The

shield item will give the player immunity to damage while it remains active, instead

incoming fire will actually bounce off the shield changing direction and dealing damage back

at the enemy unit. I plan for the shield not to simply return direction back at the enemy but to

use a physics system so that depending on the position and angle the bullet hits the shield will

determine the direction it bounces back, I want the deflected bullet to be able to continuously

bounce off the walls in the room until it reaches the other end.

The enemy NPC’s will come in groups of three standing in a row at the end of the room, all

of which will display their own hp above their heads and fire randomly in straight lines down

the room towards the player. There will be a reinforcement counter displayed on the screen

showing how many enemies there are left until the level is complete, as you defeat an enemy

if the counter is above zero another enemy will spawn. As you progress through the levels

there will be more enemies for you to face, enemies will fire more often at the player and

bullets will travel faster.

Once it’s game over, weather the player has beaten all level or if the player dies a high score

will be displayed based on the level achieved and the amount of enemies defeated.

P a g e | 4

Analysis

Aims

The aim of the program will be to setup a 3D room object for the environment, a character

object and enemy NPC objects. These will need to have appropriate animations, SFX and the

logic to react to difference circumstances to create a fun and interactive combat system.

Here are some of the key aims required;

• Keyboard input (possibly mouse also)

• Sprites for the menu and score screens

• A 3D object the player controls and can move left and right

• Third person camera setup based on player object current position

• Animated player object

• 3D object for room setting

• 3D objects for enemy NPC’s with firing, moving & death animations

• Items which move across the floor towards the player which can be picked up

• Shield which reflects bullets back to enemy when hit, dealing damage to them

• Advanced shield features allowing bullets to bounce realistically over the room

• Collision with walls and items

• Ability for player to fire upon the enemy

• Randomized firing from enemies towards the pc

• A spawning system whereby enemy NPC’s are spawned into the area taking the

position of recently deceased NPC’s and decrementing the reinforcement count

• Player and enemy units de-spawning upon 0 HP

• An in game GUI displaying statistics (i.e. HP, Ammo, Items, Score)

• Different levels of game play, increasing the difficulty the greater the level.

• Scoring system

• Sound effects

• Blocking fire on some enemy NPC’s (such as bosses)

Assumptions

The following assumptions are made;

• The enemy AI will always know what position the pc (Player character) is at.

• The enemy will know if the pc is firing special ammo upon them.

• The enemy will know how long the pc’s special shield has remaining before it expires

P a g e | 5

Initial Design

Based on the aims of the program I have decided on what classes I am going to have,

there will be 6 in total including the main class, these are; Player, NPC, Level, Object,

Menu and Main. Now let’s decide what each class’s purpose is and what is required from

them;

Player

• Controls – Using WASD or arrow keys allow player to move the object around the

environment.

• Spawning – Allow spawning of the player object based on X,Y,Z values entered

• Animate – Setup animations to be played appropriate to the objects current action

(shooting, walking)

• HP – Set a max and current HP for the player allowing it to be increased by heal kits

or decreased by incoming fire

• Despawn – despawn the player upon reaching 0 HP

• Shooting – allow player to fire in a straight line towards the enemy NPC in front of

them displaying a bullet object from the players gun travelling towards the enemy,

dealing damage and playing sounds appropriate when the bullet makes contact

• Camera – Setup a third person camera to stick behind the player object and move

according to player movement

• Items – Allow the player to have a small inventory of items, a max of 5 heal kits, 100

special ammo and 1 special shield item

• Shield – Attach a shield model to the front of the player model upon picking up a

shield, bullets colliding with the player will then instead bounce back according to the

angle of collision and damage the enemy it collides with.

P a g e | 6

NPC (enemies)

• Spawning – Allow spawning of enemy NPC models, these will be positioned in 3

positions at the end of the room, left, middle and right. Once an enemy dies if the

counter is greater than 0 after a short interval another enemy NPC will be spawned in

the correct position, taking the place of the deceased NPC

• Reinforcements – Add a counter on screen displaying current reinforcements left

(e.g. 10) this will be used to keep spawning NPC’s once they die and to add to the

players score (Giving a higher score the more enemies have been killed)

• AI – Setup different AI states for the enemy NPC’s to be in, these will be;

� Idle – Simply loop an idle animation and remain stationary

� Attacking – Set random timers e.g. between 2 – 10 seconds, once the timer is up

fire upon the player, the timer will then reset, the player then has a chance to move

out the way of the incoming bullet in which case it will despawn else if it collides

with the player object it will decrement their HP a given amount.

� Death – Upon reaching 0 HP regardless of current state the NPC will be in the

death state, this will play their dying animation plus any SFX, once this has

finished after a certain time the object will despawn and another object will

respawn in its place.

� Roam (possibility) – Based on size of the room and objects and any possible

constraints I may or may not implement the roaming state instead leaving them

stationary in a row. If I decide during implementation that it will be suitable I will

set it up like this; storing the starting spawn position I will use this as the final

return position, to create a random roaming illusion I would set flags to allow the

NPC to roam a maximum of 3 times by setting a random angle, moving them

forward for 1-5 seconds, make them stationary for so many seconds then repeat,

and on the fourth move force them to return to their spawning co-ordinates so as

they don’t wander off too far.

• HP – Set a hp value for each NPC, this value can be decreased by incoming fire when

the pc’s bullet object collides with the NPC, it will also perform a check to see if the

incoming fire is from normal or special ammo, increasing the decrement to hp

accordingly, once hp reaches 0 the NPC will die (load death state)

• Animate – Setup animations to be played appropriate to the objects current action

(shooting, dying)

• Difficulty – this will start at 0 and increase with each level, the higher the difficulty

the more enemies will be spawned, the faster they shoot, and the faster bullets move

P a g e | 7

Object

• Spawning – The main function of the object class, to spawn and position various objects

based on the type and X Y Z coordinates given.

• Rotate – To rotate the initialized object a set amount to look realistically places in the

environment

• Animate – Possible needed if any objects have animations that need to be played/looped

• Despawn – Remove and delete the specified object

Menu

• Adding Sprites – to be able to create sprites from images and position them according to

coordinates given

• GUI – To decide which GUI screen to be loaded this will be between;

• Main menu – The initial main menu screen containing a background image, and 3

sprite buttons, Play, Options and Exit

• Options – The options screen which will contain a background and sprites for the

different options settings e.g. turn SFX on/off

• Game GUI – This will be the GUI screen to be displayed once the player has clicked

play and is in the game, this will contain a bar on the right displaying Scores,

inventory, ammo etc.

• Game Over – This will be the screen to be displayed during the main game if the

player either completes the game or dies, displaying the appropriate message, but

showing the players score regardless of win/lose

• Load images – a void function that can be included when appropriate to load images, i.e.

at the very start of the program or upon clicking play

P a g e | 8

Level

• Level – This will choose which level is to be loaded based on how many levels the player

has completed, this will set the appropriate difficulty in the NPC class

• Score – This will be the players current score and will be displayed on the right of the

screen atop the GUI, this will increase based on level achieved and enemies defeated

This class will also be where the objects, NPC’s and menu screens are instantiated and

spawned, this is an appropriate place to load and delete all models and sprites used in each

level to keep things neat.

Main

This will contain the main game loop and decide which order to load models and sprites to

stagger the loading, instantiate level and player when appropriate. Upon exiting the program

it will delete all sprites, images & objects loaded.

Implementation tools

Software I will be using to make the program;

• Visual studio 2005

• DirectX 9.0

• Egg framework

• 3DS Max

• Paint

Visual Studio will be my main compiler, I am using 2005 as this is the version that best

supports the egg framework, this is a small DirectX 9.0 wrap provided by the university to

help speed up the process of basic tasks such as sprite and object loading, positioning and

rotating. Paint will be used to draw any images and 3DS Max will be used to create any 3D

models that I can’t find royally free.

P a g e | 9

Class Diagram

This is a brief class diagram outlining the main attributes and operators each class will need

and which classes will link together;

P a g e | 10

Final Design

This section will be expanding on areas from the initial design giving pseudo code and

algorithms for the more advanced class functions.

Menu

Screen Designs

The following is a rough idea of the layout of the game screens; this will be the role of the

Menu class to display the appropriate GUI.

Menu GUI

This will consist of a simple sprite background and sprites on top

representing the three buttons, play, options and exit. The player will

use the keyboard arrow keys to move between the choices which will

Display an arrow next to the button currently selected.

Implementing the selection will be simple, here’s some brief pseudo

code explaining it;

If button is 1

Sprite arrow X,Y = buttonX-50,buttonY+10

If enter key is true

 If button is 1

Load game

 Else if button is 2

 Load options

 Else

 Exit

If down key is 1 button++

If up key is 1 button - -

Options GUI

The options button will take you to a screen

where you can change SFX resolution view

controls etc, and will display the current

setting in the top right of the screen.

The exit button in the bottom right will allow

the user to go back to the menu screen.

P a g e | 11

Game GUI

If the user selects play, the main game will then start,

to avoid being thrown straight into battle there will

be a countdown on screen from 3 – 0 to get your

bearings. In this phase the menu sprites and

background well all be hidden and the in game GUI

will be loaded, with the main models of the game

being on the left and the sprite display and

information on the right. This will display the current

game level, the player’s hp min/max, the amount of

special ammo they have left and shield duration

remaining (if shield is picked up).

Game over GUI

The final screen will be the game over screen, this will be

displayed once the player has completed all 5 levels or the

player has died, displaying ‘You Win’ or ‘You Lose’

appropriately, it will also display the players score and give

the user a choice to play again or exit the program with Y/N

keys.

P a g e | 12

Player

Let’s decide how to implement the main features of the player class from the initial design.

For control I plan to have the player constantly facing the end of the room towards the

enemies, except when running from side to side then it will face the way it’s running and

snap back to facing the enemies when stopped.

Here a basic idea of how I will set up the controls and functions;

If left key is pressed

 Player.moveleft ()

If Right key is pressed

 Player.moveright ()

If Space key is pressed

 Player.shoot ()

Movement of the character which will rotate the object, move & play its animation, here’s an

example of one movement direction;

Moveleft (){

Rotate objectY -90

Object positionX - -

Sidestep anim();

If object player collides with wall

 Position.x = oldX // player stops at positon from previous cycle

 Position.z = oldZ

Else

 Update Position.x & position.z}

I will store the animations in a switch statement so they can be played easily

e.g.;

P a g e | 13

Switch (int animLoop)

Case ‘shoot’

 Objectanimspeed (40)

 Loopobject animframe (1-45)

Case ‘walk’

Objectanimspeed (40)

 Loopobjectanimframe (46-66)

For shooting I will give the player an unlimited supply of basic ammo which will do a small

amount of damage to the enemy’s hp that’s in front of the player when firing.

Once the player picks up special ammo their normal bullets will do double regular damage

but as they shoot a counter of their current ammo will decrease, when it reaches 0 the player

will return to normal damage.

An example to implement firing;

shoot (){

position objectBULLETXYZ = objectPLAYERXYZ

// check if player is on left, right or centre, then get co-ordinates of opposite enemy e.g.

if playerSIDE is left

targetX = npcLeftX, targetY = npcLeftY targetZ = npcLeftZ,

//get distance between target position and bullets spawn position and divide by a number to

make a move speed, e.g. divided by 1000 means it would take 1000 code cycles of the bullet

moving at that speed to reach its target then multiply speed by a velocity value to make it

travel faster

Velocity = 4

moveX = targetX – objectBULLETX / 1000 * Velocity

moveY = targetY – objectBULLETY / 1000 * Velocity

moveZ= targetZ – objectBULLETZ / 1000 * Velocity

Once the bullet reaches its destination decrement the NPC’s HP which resides in the spot

fired at based on bullet damage.

Shield Physics

If the player picks up a shield by moving in

hide the shield object and position a shield on the player, if the player then moves into the

line of fire from an enemy bullet the bullet will hit the player but do no damage, and instead

will return a bullet back to the enemy it came from by

the bullet bounce off the shield back to the enemies or into the walls of the room object.

Now let’s think about the actual physics to make angled bouncing;

As the players shield will be in a crescent shape in front of the player when a bullet hits the

shield based on the distance from the centre will determine how much to rotate the directional

vector of the bullet in degrees.

bullet when it collides with the wall.

do it with trigonometry using math.sin and math.cos or another way would be simply to use

the velocities horizontally and vertically (X,Y

bottom of the screen invert the Y velocity, if it hits the left or right

life simpler, as the bullets will all be

time anyway, this would create a plausible effect. I feel as long as it looks reasonably realistic

then it’s a success, to create a perfectly

consuming task without the use of a physics library

knowledge than my own.

If the player picks up a shield by moving into the objects co-ordinates on the screen I will

hide the shield object and position a shield on the player, if the player then moves into the

line of fire from an enemy bullet the bullet will hit the player but do no damage, and instead

et back to the enemy it came from by working out a bounce angle to make

the bullet bounce off the shield back to the enemies or into the walls of the room object.

Now let’s think about the actual physics to make angled bouncing;

be in a crescent shape in front of the player when a bullet hits the

shield based on the distance from the centre will determine how much to rotate the directional

. Then there’s the issue of getting the bouncing angle of the

bullet when it collides with the wall. In 2D this wouldn’t be too hard to work out you could

do it with trigonometry using math.sin and math.cos or another way would be simply to use

rizontally and vertically (X,Y) and if the object collides with the top or

invert the Y velocity, if it hits the left or right invert the X velocity.

Angle of reflection by Eric Weisstein’s World of

Physics

This is a diagram I found which shows the kind of

idea; whatever angle the object is at the time of

collision will cause a mirrored returning angle on

the other side.

I could work out a similar approach with 3D co

ordinates not making any changes to the Y co

ordinate and just altering the x &

life simpler, as the bullets will all be travelling at the same distance from the ground all the

would create a plausible effect. I feel as long as it looks reasonably realistic

then it’s a success, to create a perfectly accurate physics system would be a very time

consuming task without the use of a physics library or much more advanced physics

P a g e | 14

ordinates on the screen I will

hide the shield object and position a shield on the player, if the player then moves into the

line of fire from an enemy bullet the bullet will hit the player but do no damage, and instead

working out a bounce angle to make

the bullet bounce off the shield back to the enemies or into the walls of the room object.

be in a crescent shape in front of the player when a bullet hits the

shield based on the distance from the centre will determine how much to rotate the directional

Then there’s the issue of getting the bouncing angle of the

t be too hard to work out you could

do it with trigonometry using math.sin and math.cos or another way would be simply to use

des with the top or

the X velocity.

Angle of reflection by Eric Weisstein’s World of

This is a diagram I found which shows the kind of

t is at the time of

collision will cause a mirrored returning angle on

I could work out a similar approach with 3D co-

ordinates not making any changes to the Y co-

ordinate and just altering the x & z values to make

travelling at the same distance from the ground all the

would create a plausible effect. I feel as long as it looks reasonably realistic

accurate physics system would be a very time

or much more advanced physics

P a g e | 15

Camera

For the Camera setup to give an accurate third person View I will use trigonometry. To set

this up we need to know the horizontal rotation, vertical rotation and radius. The camera will

rotate around the object as if in a sphere so to get the horizontal and vertical rotation we use

the position of the camera on the circle around the object(horizontal) and the circle

perpendicular to that(vertical). Firstly to get the Y rotation of the camera from the player’s

object (Working out the Y axis first as the rotations on this axis can alter the X and Z

coordinates slightly);

Radius = constant distance from the object

vRot = vertical rotation (current X,Y,Z position of camera on vertical circle)

hRot = horizontal rotation (current X,Y,Z position of camera on horizontal circle)

y1 = radius*sin(vRot) r1 = radius*cos(vRot)

y1 = y component of camera, r1 = new radius to use

Radius has changed because since looking from the top down the camera will have moved

closer to the centre (pc object) because of its movement vertically along the circle.

Now to find the X and Z components

x1 = r1*cos(hRot) z1 = r1*sin(hRot)

Now we have the x y and z components we can update the position of the camera;

UpdateCamPosition() {

 // radius is the r1 temporary radius stored earlier

position.X = (x1)(radius * Math.Cos(vRotation) * Math.Cos(hRotation));

 position.Y = (y1)(radius * Math.Sin(vRotation));

 position.Z = (z1)(radius * Math.Cos(vRotation) * Math.Sin(hRotation));}

To rotate the position of the camera, a simple function like this would work;

RotateCam(float h, float v) { hRotation += h; vRotation += v; UpdatePosition(); }

Using a function like this will allow us to zoom the camera based on distance provided;

Zoom(float dist) {

 radius += dist; if(radius < .01f) radius = .01f; UpdateCamPosition(); }

P a g e | 16

NPC

The NPC class will need to be able to load one or two different models (a regular enemy & a

boss type) it will then need to position 3 models at the end of the room at a time, and when

one enemy has been defeated, remove the model and replace it with another enemy model

until the enemy reinforcement counter reaches 0. The enemy needs to be able to fire

randomly in the player’s direction, which will display a laser or bullet object and move it

towards the player using, if it collides with the player it will damage the players max hp. If

the player’s hp reaches 0 the game will end and the game over screen will load.

The first thing in the enemy class will be to set up a row of 3 enemies, animate them, and

begin firing.

Enemies on the field will be numbered 1 2 and 3 depending on their position. The numbers

will decide the co-ordinates that the enemy object be positioned. If an enemy at position 2

dies for example I will set a timer to wait a few seconds then respawn another enemy at

position 2’s co-ordinates and number it e.g.

//upon death of an NPC in the death state store its position (left right centre) and set a timer

for the new NPC to be spawned (spawnTimer)

if reinforceTimer > 0

 if spawnTimer > currentTime

 if emptySpace = 1 // 0-left 1-centre 2-right

 grunt.spawn(‘1’,emptySpaceX[1], emptySpaceY[1], emptySpaceZ[1])

 reinforceCount - -

Firing will be fairly straight forward, enemies will have randomised timers so they fire bullet

object which will travel in a straight line down the screen towards the player and hide the

object once it’s out of view, the higher the game level the more frequent I will make enemies

fire and the faster the bullets will actually travel. HP decrement and bullet logic will be the

same as discussed in the player class.

P a g e | 17

SFX

I plan to implement various music and SFX for the program; I will have a constant ambient

sound looping in the background, and change to a different more battle orientation sound

while the player is in the game state.

I will use single play sounds for all the different game effects, these I will find royally free or

record myself, sounds I will need are;

• PC Gunfire – Regular ammo fire, and a different sound for special ammo fire

• PC Hit – Colliding sound of an enemy bullet damaging the player

• PC Move – Footstep sounds for moving the player around

• PC Pick up item – A sound to be played when an item on the ground is picked up

• PC Shield Deflect Sound – A sound of bullets being deflected off the PC’s Shield

• PC Heal – A sound of the player using a healing kit

• PC Die – A sound of the player’s death

• NPC Hit – A sound of enemy NPC’s taking damage from the players gunfire

• NPC Gunfire – Sound of enemy gunfire

• NPC Death – A sound of enemies dying

• NPC Spawn – A sound each time an enemy is spawned onto the field

• Menu – A button click sound

• Menu – Button Highlight sound

• Menu – Game Over sound Win/Lose

• Ambience – Menu ambience

• Ambience – In game ambience

P a g e | 18

HCI Considerations

The aim of my design is to try and make interaction with the program as simple as possible

for the user, giving clear names of choices and making button layouts and colours consistent

on each screen. With HCI in mind I also need controls to be clearly listed, even with the

controls listed in the options page users could still forget them by the time they go to play the

game and not realise how to do stuff such as drink a potion or use a shield.

A solution could be to use keyboard controls while in the game view and have a shortcut key

(e.g. F1) toggle an on-screen display of the controls.

I also need a clear way for the user to return to the menu page from the game screen, again I

could do this with another keyboard key and have it request the user to then press ‘Y/N’ to

confirm the choice, this will prevent accidental pressing of the key.

P a g e | 19

Testing Strategy

There will be a lot of testing required for this, in the following testing I plan to test each

section in many ways

1. Sprite Testing – Ensure all Sprites display correctly over all the relevant sprites, and

disappear when expected.

2. Button Testing – Ensure all buttons go to the correct screens and back again, make

sure buttons still work when returning to the menu after closing the game screen.

Make sure the co-ordinates properly cover the buttons for mouse click (e.g. You

can’t click outside the button to control it)

3. Boundary Testing – Make sure the player cannot go outside the map by trying to

pass through as many points as necessary.

4. File Input – Check to see if it loads the values correctly, add spaces in the file change

the numbers around, make sure it can load one file and then after returning to the

menu load another file successfully.

5. Shooting – Make sure incoming and outgoing fire damages and collides with the

appropriate target accurately.

6. Animations – Test to see if all animations play properly and loop when needed.

Ensure appropriate animations don’t run when there not meant to e.g. the running

on the spot.

7. Camera – Does the camera follow the player properly, does it go through the walls

or ground at any point.

8. Text – Check to make sure all on screen text displays properly over the appropriate

screen and disappears when on different screens.

9. Crash Testing – Check to make sure you cannot crash the program, load files

repeatedly, move the player into the walls while shooting and performing many

actions at once, does any unusual behaviour occur?

Restarting – When returning to the menu check to make sure all settings are reset and all

appropriate objects are deleted and reloaded, e.g. is the player in the correct starting

position.

P a g e | 20

Player Does it work Problems encountered

Does player collide properly

with walls

Does player collide with

bullets

Does movement work

Does player animations work

Does player SFX work

Does player accurately take

damage

Does player die on 0 HP

Does player Pick up items

accurately

Does player use and

decrement item counts

accurately

Does shield deflect bullets

properly

Objects Does it work Problems encountered

Do object models load

correctly

Are object using the correct

texture

Are object correctly

positioned

Are object correctly rotates

Any other visual problems

with objects on screen

P a g e | 21

Menu Does it work Problems encountered

Does Play, Option & Exit

work from main screen

Does SFX options work in

options page

Are all sprites and text

displayed correctly

Can you return to menu from

in game screen

Does High Scores work

correctly

Does Game over screen work

correctly

Do in game GUI images

Enemy Does it work Problems encountered

Does Enemy Fire randomly

Does Enemy collide with

bullets

Does movement work

Does enemy animations work

Does enemy SFX work

Does enemy accurately take

damage

Does enemy die on 0 HP

Does enemy despawn

correctly and decrement

reinforcements

Does enemy respawn in

correct positions

P a g e | 22

display correctly

Level Does it work Problems encountered

Does the correct level load

Does high scores display

properly

Is player & enemy models

positioned correctly

Do items display and move

correctly

Do enemies stop spawning

when counter reaches 0

-

2
3

 -

T
im

e
 p

la
n

 A
s
I
h
av
e
si
x
 w
ee
k
 t
o
 i
m
p
le
m
en
t
th
e
p
ro
g
ra
m
 I
 h
av
e
sp
li
t
th
e
m
aj
o
r
ta
sk
s
u
p
 i
n
to
 s
ec
ti
o
n
s
an
d
 s
et
 a
 r
o
u
g
h
 t
im

e
w
h
ic
h
 I
 f
ee
l
I
ca
n
 c
o
m
p
le
te
 t
h
em

in
,
th
is
 i
s
as
 f
o
ll
o
w
s;

